Abstract
We generalize the concept of the Wehrl entropy of quantum states which gives a basis-independent measure of their localization in phase space. We discuss the minimal values and the typical values of these R{enyi-Wehrl entropies for pure states for spin systems. According to Lieb's conjecture the minimal values are provided by the spin coherent states. Though Lieb's conjecture remains unproven, we give new proofs of partial results that may be generalized for other systems. We also investigate random pure states and calculate the mean Renyi-Wehrl entropies averaged over the natural measure in the space of pure quantum states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.