Abstract

Relations between Shannon entropy and Rényi entropies of integer order are discussed. For any N-point discrete probability distribution for which the Rényi entropies of order two and three are known, we provide a lower and an upper bound for the Shannon entropy. The average of both bounds provide an explicit extrapolation for this quantity. These results imply relations between the von Neumann entropy of a mixed quantum state, its linear entropy and traces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.