Abstract

tRNA-derived small RNAs (tsRNAs), a new category of regulatory small non-coding RNA existing in almost all branches of life, have recently attracted broad attention. Increasing evidence has shown that tsRNAs are not random degradation debris of tRNAs, but products cleaved by specific endoribonucleases, with versatile functions in response to various developmental and environmental cues. However, it is still unclear about the diversity, biogenesis and function of tsRNAs in plants. In this study, we comprehensively profiled 10-60 nts small RNAs in Arabidopsis thaliana leaf with or without wounding stress and identified four 16 nts tiny tRFs (tRNA-derived fragments) sharply increased after wounding, namely tRF5'Ala. Notably, genetic, biochemical and bioinformatic data indicated that RNS2, a member of class II RNase T2 enzymes, was the main endoribonuclease responsible for the biogenesis of tRF5'Ala. Moreover, tRF5'Ala was highly abundant and conserved in Arabidopsis and rice pollen. However, tRF5'Ala did not associate with AGO 1 in vivo or display any inhibitory effect on the translation of a luciferase mRNA in vitro. Altogether, our study highlights the discovery of a novel class of tiny tsRNAs drastically increased under wounding stress as well as their generation by RNS2, which provides a new insight into tsRNAs research in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call