Abstract
A generalized Sylvester equation is a special formulation containing the Sylvester equation, the Lyapunov equation and the Stein equation, which is often encountered in various fields. However, the time-variant generalized Sylvester equation (TVGSE) is rarely investigated in the existing literature. In this article, we propose a noise-suppressing recurrent neural network (NSRNN) model activated by saturation-allowed functions to solve the TVGSE. For comparison, the existing zeroing neural network (ZNN) models and some improved ZNN models are introduced. Additionally, theoretical analysis on the convergence and robustness of the NSRNN model is given. Furthermore, computer simulations on illustrative examples and applications to robots and acoustic source localization are carried out. Validation results synthesized by the NSRNN model and other ZNN models are provided to illustrate the ability in solving the TVGSE and dealing with noises of the NSRNN model, and the inaction of other ZNN models to noises.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.