Abstract

BackgroundPrecursor T-cell lymphoblastic lymphomas (T-LBL) are rare aggressive hematological malignancies that mainly develop in children. As in other cancers, the loss of cell cycle control plays a prominent role in the pathogenesis in these malignancies that is primarily attributed to loss of CDKN2A (encoding protein p16INK4A). However, the impact of the deregulation of other genes such as CDKN1C, E2F1, and TP53 remains to be clarified. Interestingly, experiments in mouse models have proven that conditional T-cell specific deletion of Cdkn1c gene may induce a differentiation block at the DN3 to DN4 transition, and that the loss of this gene in the absence of Tp53 led to aggressive thymic lymphomas.ResultsIn this manuscript, we demonstrated that the simultaneous deregulation of CDKN1C, E2F1, and TP53 genes by epigenetic mechanisms and/or the deregulation of specific microRNAs, together with additional impairing of TP53 function by the expression of dominant-negative isoforms are common features in primary human T-LBLs.ConclusionsPrevious experimental work in mice revealed that T-cell specific deletion of Cdkn1c accelerates lymphomagenesis in the absence of Tp53. If, as expected, the consequences of the deregulation of the CDKN1C-E2F1-TP53 axis were the same as those experimentally demonstrated in mouse models, the disruption of this axis might be useful to predict tumor aggressiveness, and to provide the basis towards the development of potential therapeutic strategiesin human T-LBL.

Highlights

  • Precursor T-cell lymphoblastic lymphomas (T-LBL) are rare aggressive hematological malignancies that mainly develop in children

  • As expected, the consequences of the deregulation of the CDKN1CE2F1-TP53 axis were the same as those experimentally demonstrated in mouse models, the disruption of this axis might be useful to predict tumor aggressiveness, and to provide the basis towards the development of potential therapeutic strategiesin human T-LBL

  • Deregulation of CDKN1C, E2F1 and TP53 in T-LBLs The results of massive RNA-sequencing (RNA-Seq) of the transcript isoforms that encode proteins in the 8 TLBL samples of the exploratory cohort showed that the mRNA level of CDKN1C was strongly reduced in all analysed tumours compared to that of the normal foetal thymuses, with fold-changes ranging from − 25.99 to − 2.15 in the canonical isoform ENST00000414822

Read more

Summary

Introduction

Precursor T-cell lymphoblastic lymphomas (T-LBL) are rare aggressive hematological malignancies that mainly develop in children. Precursor T-cell lymphoblastic neoplasms are aggressive haematological malignancies that mainly develop in children (in particular adolescent males) and in adults. They derive from maturing thymocytes leading to excessive lymphoblastoid cells in the bone marrow and other lymphoid organs. The loss of cell cycle control plays a prominent role in the pathogenesis of these malignancies that is primarily attributed to loss of CDKN2A (which encodes the tumour suppressor protein p16INK4A) and, to a lesser extent, loss of RB1 or CDKN1B (which encodes p27/KIP1 protein) and aberrantly high levels of CCND2 (encoding cyclin D2) [2].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.