Abstract

Withaferin A (WA) exhibits cancer chemopreventive efficacy in preclinical models representative of two different subtypes of breast cancer. However, the mechanism(s) underlying breast cancer chemoprevention by WA is not fully elucidated. We performed RNA-seq analyses using a non-tumorigenic mammary epithelial cell line (MCF-10A) and human breast cancer cells (BCC) belonging to the luminal-type (MCF-7), HER2-enriched (SK-BR-3), and basal-like subtype (MDA-MB-231) to identify novel cancer-selective mechanistic targets of WA. The WA-regulated transcriptome was strikingly different between MCF-10A versus BCC. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed downregulation of genes associated with cellular senescence in WA-treated BCC. Consequently, the number of senescence-associated β-galactosidase positive cells was decreased significantly in WA-treated BCC but not in the MCF-10A cells. WA treatment caused upregulation of senescence marker p21 more robustly in BCC than in MCF-10A. Breast cancer prevention by WA in rats was also associated with upregulation of p21 protein expression. The Reactome pathway analyses indicated upregulation of genes associated with cellular response to stress/external stimuli in WA-treated BCC but not in MCF-10A. Two proteins represented in these pathways (HSPA6 and NRF2) were further investigated. While HSPA6 was dispensable for WA-mediated apoptosis and autophagy or inhibition of cell migration, the NRF2 knockout cells were more resistant to apoptosis resulting from WA treatment than control cells. Finally, expression of some glycolysis-related proteins was decreased by WA treatment both in vitro and in vivo. In summary, this study provides novel insights into cancer-selective pathways affected by WA that may contribute to its chemopreventive efficacy in breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.