Abstract
Duck plague virus (DPV), a member of alphaherpesvirus sub-family, can cause significant economic losses on duck farms in China. DPV Chinese virulent strain (CHv) is highly pathogenic and could induce massive ducks death. Attenuated DPV vaccines (CHa) have been put into service against duck plague with billions of doses in China each year. Researches on DPV have been development for many years, however, a comprehensive understanding of molecular mechanisms underlying pathogenicity of CHv strain and protection of CHa strain to ducks is still blank. In present study, we performed RNA-seq technology to analyze transcriptome profiling of duck spleens for the first time to identify differentially expressed genes (DEGs) associated with the infection of CHv and CHa at 24 h. Comparison of gene expression with mock ducks revealed 748 DEGs and 484 DEGs after CHv and CHa infection, respectively. Gene pathway analysis of DEGs highlighted valuable biological processes involved in host immune response, cell apoptosis and viral invasion. Genes expressed in those pathways were different in CHv infected duck spleens and CHa vaccinated duck spleens. The results may provide valuable information for us to explore the reasons of pathogenicity caused by CHv strain and protection activated by CHa strain.
Highlights
After firstly reported in Netherlands at 1923, duck plague (DP) was rapidly spread around the world [1]
The disease is caused by duck plague virus (DPV), a member of alphaherpesvirus subfamily, which is a double-stranded DNA virus composed with capsid, tegument and envelope [4]
DPV Chinese virulent strain (CHv) strain or attenuated DPV attenuated DPV vaccines (CHa) strain at 24 hpi and the results may provide valuable information for us to explore the reasons of pathogenicity caused by CHv strain and protection activated by CHa strain
Summary
After firstly reported in Netherlands at 1923, duck plague (DP) was rapidly spread around the world [1]. The disease is caused by duck plague virus (DPV), a member of alphaherpesvirus subfamily, which is a double-stranded DNA virus composed with capsid, tegument and envelope [4]. After the first reports of DPV highly virulent strain and attenuated strain genomes, the studies of gene structure and functions have been spring up. DPV highly virulent strain genes, such as capsid protein genes UL19, UL35 tegument protein genes UL16, UL51 and envelope glycoprotein genes like UL44, US7, US8 were well studied [10,11,12,13,14,15,16].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.