Abstract
Reliable determination of RNA secondary structure depends on both computer algorithms and experimental probing of nucleotides in single- or double-stranded conformation. Here we describe the exploitation of the endonucleolytic activity of the Bacillus subtilis enzyme RNase J1 as a probe of RNA structure. RNase J1 cleaves in single-stranded regions and, in vitro at least, the enzyme has relatively relaxed nucleotide specificity. We confirmed the feasibility of the approach on an RNA of known structure, B. subtilis tRNA(Thr). We then used RNase J1 to solve the secondary structure of the 5' end of the hbs mRNA. Finally, we showed that RNase J1 can also be used in footprinting experiments by probing the interaction between the 30S ribosomal subunit and the Shine-Dalgarno element of the hbs mRNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.