Abstract

Hyper-osmotic stress strongly induces expression of the Escherichia coli proU operon encoding a high affinity uptake system for the osmoprotectants glycine betaine and proline betaine. Osmoregulation of proU takes place at the transcriptional level by upregulation of the promoter at high osmolarity and repression of transcription by the nucleoid-associated protein H-NS at low osmolarity. In the present study, we describe an additional level of proU osmoregulation that is independent of transcriptional regulation. We show that osmoregulation occurs at a post-transcriptional level involving RNase III. RNase III specifically processes the proU mRNA within a conserved secondary structure extending from position +203 to +293 of the transcript. Processing is efficient at low osmolarity, but inhibited at high osmolarity. Blocking of RNase III processing by mutation of the processing site eliminates post-transcriptional osmoregulation of proU. Further, the proU mRNA is relatively stable at high osmolarity with a half-life of approximately 65 sec. However, upon osmotic downshift, RNase III immediately processes the proU mRNA which reduces its half-life to less than 4 sec. The data suggest that the primary role of RNase III-mediated processing of proU mRNA is to ensure rapid shutdown of proU upon hypo-osmotic stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call