Abstract

Regulation of nucleotide and nucleoside concentrations is critical for faithful DNA replication, transcription, and translation in all organisms, and has been linked to bacterial biofilm formation. Unusual 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) recently were quantified in mammalian systems, and previous reports have linked these nucleotides to cellular stress and damage in eukaryotes, suggesting an intriguing connection with nucleotide/nucleoside pools and/or cyclic nucleotide signaling. This work reports the first quantification of 2',3'-cNMPs in Escherichia coli and demonstrates that 2',3'-cNMP levels in E. coli are generated specifically from RNase I-catalyzed RNA degradation, presumably as part of a previously unidentified nucleotide salvage pathway. Furthermore, RNase I and 2',3'-cNMP levels are demonstrated to play an important role in controlling biofilm formation. This work identifies a physiological role for cytoplasmic RNase I and constitutes the first progress toward elucidating the biological functions of bacterial 2',3'-cNMPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call