Abstract

The unprecedented target-specificity of double-stranded RNA (dsRNA), due to its sequence-specific mode of action, puts dsRNA at the forefront of biosafe insecticide technology. Since 2007, sensitive target genes have been identified in numerous crop pest insects, with an end goal of applying RNA interference (RNAi) in pest management. Key RNAi targets identified include genes involved in (1) feeding and digestion, (2) production of dsRNases, (3) resistance to insecticides and plant allelochemicals, (4) reproductive fitness, and (5) transmission of plant viruses. Despite the advances, there remain critical knowledge gaps in each of these areas. Particular emphasis must be placed on ensuring RNAi's compatibility with integrated pest management (IPM), via further identification of molecular targets that reduce crop damage while sustaining pest (host) populations for highly specialized biocontrol agents, the latter representing a core pillar of IPM.

Highlights

  • In 2007, two studies demonstrated potential for double-stranded RNA (dsRNA) to act as a nucleotide sequence-specific insecticide, as it induced RNA interference (RNAi) in insects consuming dsRNA comprising an inverted repeat of a target gene’s coding sequence (Baum et al, 2007; Mao et al, 2007). Baum et al (2007) demonstrated this concept in western corn rootworm (Diabrotica virgifera) and Colorado potato beetle (Leptinotarsa decemlineata), major pests of maize and potato, respectively

  • In 2007, two studies demonstrated potential for double-stranded RNA to act as a nucleotide sequence-specific insecticide, as it induced RNA interference (RNAi) in insects consuming dsRNA comprising an inverted repeat of a target gene’s coding sequence (Baum et al, 2007; Mao et al, 2007)

  • Mao et al (2007) demonstrated this concept in cotton bollworm (Helicoverpa armigera), through targeting the cytochrome P450 monooxygenase gene CYP6AE14, and showed how its targeted downregulation impairs H. armigera’s ability to detoxify the plant allelochemical gossypol; as well as through targeted downregulation of the glutathione-S-transferase gene GST1. Both studies demonstrated that pest control efficacy was based on nucleotide sequence identity, placing RNAi at the forefront of biosafe insecticide technology given its potential for target species-specificity

Read more

Summary

Introduction

In 2007, two studies demonstrated potential for double-stranded RNA (dsRNA) to act as a nucleotide sequence-specific insecticide, as it induced RNA interference (RNAi) in insects consuming dsRNA comprising an inverted repeat of a target gene’s coding sequence (Baum et al, 2007; Mao et al, 2007). Baum et al (2007) demonstrated this concept in western corn rootworm (Diabrotica virgifera) and Colorado potato beetle (Leptinotarsa decemlineata), major pests of maize and potato, respectively. Key points include targeting molecules involved in feeding and digestion, production of dsRNases (enzymes which degrade dsRNAs), and resistance to chemical compounds (e.g., commercial pesticides, plant allelochemicals); as well as the potential for minimizing RNAi’s confliction with agroecological services provided by highly specialized biocontrol agents, which is important due to RNAi’s potential for use in integrated pest management (IPM).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.