Abstract

To examine flux regulation in the flavonoid pathway of tobacco flowers, we suppressed two genes for dihydroflavonol 4-reductase (NtDFR 1 and 2) by RNA interference (Ri)-mediated post transcriptional gene silencing in pink-flowered tobacco. Two phenotypes were observed, pale pink (DFR-Ri_PP)- and white (DFR-Ri_W)-flowered lines. The relative mRNA levels of NtDFR genes in DFR-Ri_PP and DFR-Ri_W lines were reduced by 79%–95% relative to non-transformed (NT) plants. DFR-Ri_W lines had five-fold higher levels of small interference RNAs compared to DFR-Ri_PP lines. Expression of eight structural genes in the flavonoid pathway was significantly increased in DFR-Ri_W lines but not in DFR-Ri_PP lines based on quantitative RT-PCR. Anthocyanin contents correlated with flower color, with a reduction of 72%–97% in DFR-Ri_PP and DFR-Ri_W lines. Decreases in anthocyanin in flower were proportional with reductions of proanthocyanidin content in seeds. Two pale pink lines, DFR-Ri_PP 17 and 20, with anthocyanin decreases and the lowest level of DFR gene silencing, had higher (dihydro) flavonol production than a white flowered line, DFR-Ri_W 67. This finding suggests that suppression of DFR can increase the total levels of flavonoids due to (dihydro) flavonol biosynthesis. Our observations that higher suppression of DFR had a greater influence on the expression of flavonoid biosynthetic genes demonstrates the key role of DFR in the pathway and allows selection among DFR-Ri lines for plants with specific gene expression profiles to fine-tune flux through the pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call