Abstract

BackgroundChanges in chromosome number or structure as well as supernumerary centrosomes and multipolar mitoses are commonly observed in human tumors. Thus, centrosome amplification and mitotic checkpoint dysfunctions are believed possible causes of chromosomal instability. The Retinoblastoma tumor suppressor (RB) participates in the regulation of synchrony between DNA synthesis and centrosome duplication and it is involved in transcription regulation of some mitotic genes. Primary human fibroblasts were transfected transiently with short interfering RNA (siRNA) specific for human pRb to investigate the effects of pRb acute loss on chromosomal stability.ResultsAcutely pRb-depleted fibroblasts showed altered expression of genes necessary for cell cycle progression, centrosome homeostasis, kinetochore and mitotic checkpoint proteins. Despite altered expression of genes involved in the Spindle Assembly Checkpoint (SAC) the checkpoint seemed to function properly in pRb-depleted fibroblasts. In particular AURORA-A and PLK1 overexpression suggested that these two genes might have a role in the observed genomic instability. However, when they were post-transcriptionally silenced in pRb-depleted fibroblasts we did not observe reduction in the number of aneuploid cells. This finding suggests that overexpression of these two genes did not contribute to genomic instability triggered by RB acute loss although it affected cell proliferation. Acutely pRb-depleted human fibroblasts showed the presence of micronuclei containing whole chromosomes besides the presence of supernumerary centrosomes and aneuploidy.ConclusionHere we show for the first time that RB acute loss triggers centrosome amplification and aneuploidy in human primary fibroblasts. Altogether, our results suggest that pRb-depleted primary human fibroblasts possess an intact spindle checkpoint and that micronuclei, likely caused by mis-attached kinetochores that in turn trigger chromosome segregation errors, are responsible for aneuploidy in primary human fibroblasts where pRb is acutely depleted.

Highlights

  • Changes in chromosome number or structure as well as supernumerary centrosomes and multipolar mitoses are commonly observed in human tumors

  • Our results indicate that micronuclei formation caused by aneugenic events leading to chromosome loss, likely originating from erroneous kinetochore attachment, and not spindle assembly checkpoint dysfunctions are the trigger for aneuploidy in pRb-depleted primary human fibroblasts

  • We show for the first time that Retinoblastoma tumor suppressor (RB) acute loss triggers centrosome amplification and aneuploidy in human primary fibroblasts

Read more

Summary

Introduction

Changes in chromosome number or structure as well as supernumerary centrosomes and multipolar mitoses are commonly observed in human tumors. Centrosome amplification and mitotic checkpoint dysfunctions are believed possible causes of chromosomal instability. The predominant form of genomic instability in human cancer is chromosome instability (CIN), which is characterized by gains or losses of whole chromosomes (aneuploidy) and chromosomal structural aberrations [1]. Aneuploidy occurrence could generate in a single step multiple changes required for tumor initiation and progression and is frequently observed in clinical tumor specimens. It is still debated whether aneuploidy is the consequence or the cause of tumorigenesis [3,4]. At least two possible causes, not mutually exclusive, could be responsible for aneuploidy: mutations in genes encoding mitotic regulators, like spindle assembly checkpoint (SAC) proteins, and defects in centrosome homeostasis

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call