Abstract

Combinatorial therapies for the treatment of HIV infection have changed the course of the AIDS epidemic in developed nations where the antiviral drug combinations are readily available. Despite this progress, there are many problems associated with chemotherapy for AIDS including toxicities and emergence of viral mutants resistant to the drugs. Our goal has been the development of a hematopoietic gene therapy treatment for HIV infection. Like chemotherapy, gene therapy for treatment of HIV infection should be used combinatorially. We have thus combined three different inhibitory genes for treatment of HIV infection into a single lentiviral vector backbone. The inhibitory agents engage RNAi via a short hairpin RNA targeting HIV tat/rev mRNAs, a nucleolar localizing decoy that binds and sequesters the HIV Tat protein, and a ribozyme that cleaves and downregulates the CCR5 chemokine receptor used by HIV for cellular entry. This triple combination has proven to be highly effective for inhibiting HIV replication in primary hematopoietic cells, and is currently on track for human clinical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.