Abstract

Bursicon is a heterodimeric neuropeptide composed of Burs-α and Burs-β subunits that plays an important role in cuticle tanning and wing expansion in insects. In this study, full-length cDNAs of Burs-α (LdBurs-α) and Burs-β (LdBurs-β) genes were identified in gypsy moth (Lymantria dispar) and cloned. The 480 bp and 420 bp open reading frames (ORFs) encode 159 and 129 amino acid polypeptides, respectively. LdBurs-α and LdBurs-β have 11 conserved cysteine residues, and LdBurs-α and LdBurs-β genes were expressed during all developmental stages according to quantitative reverse transcription PCR (qRT-PCR), with highest expression in the egg stage. High expression levels were also detected in the haemolymph, cuticle and head. To explore the physiological functions of LdBurs-α and LdBurs-β, the genes were knocked down in larvae and pupae using RNA interference (RNAi), and expression levels of LdBurs-α and LdBurs-β were decreased by 42.26–80.09%. Wing defects were observed in L. dispar pupae following Ldbursion silencing, with a phenotypic percentage ranging from 10.17% to 15.00%. RNAi-mediated knockdown of Ldbursicon prevented the expansion of male and female L. dispar adult wings, with malformation rates ranging from 6.38% and 30.00% to 57.69% and 69.23%, but no cuticle tanning defects were observed in pupae or adults. The results indicate that bursicon plays a key role in wing expansion in L. dispar adults, making it a potentially novel molecular target for insecticide-based control of this pest species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call