Abstract

Drosophila melanogaster utilizes innate immune response to defend against exogenous pathogens. The molecular regulation mechanism of the process is evolutionarily conserved. Research of the regulatory mechanisms of Drosophila innate immunity is greatly significant for understanding the modulation of the human innate immunity and the pathogenesis of related diseases. To explore novel regulators in the STING-dependent innate immune response in Drosophila, we utilized the double-stranded RNA-mediated gene expression silencing technique and the dual-luciferase reporter system in knockdown experiments on 9 genes encoding the ubiquitin ligase such as echinus (CG2904), usp16 (CG4165), smurf (CG4943), pellino (CG5212), usp47 (CG5486), diap2 (CG8293), dtraf2 (CG10961), roquin (CG16807) and usp10 (CG32479) in the S2 cells in vitro. The results suggested a negative correlation between CG16807 (roquin) and the STING signaling pathway. Further studies showed that over-expression of roquin in S2 cells significantly inhibited STING innate immune signaling. Meanwhile, Listeria infection experiments showed that knocking down of roquin markedly elevated the expression levels of anti-microbial peptides and inhibited the proliferation of Listeria, thus increasing the survival rates post pathogenic infection. Taken together, our results suggested that the RNA-binding protein Roquin negatively regulates the STING-dependent innate immune response in Drosophila. In view of the high correlation between Drosophila genes and human genes, this study provides a theoretical basis for further development of treatments for STING-related innate immune diseases in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.