Abstract

Nucleosides and their analogues constitute an essential family of anticancer drugs. DNA has been the presumptive target of the front-line prodrug for acute myeloid leukemia (AML), cytarabine (ara-C), since the 1980s. Here, the biomolecular targeting of ara-C was evaluated in primary white blood cells using the ara-C mimic "AzC" and azide-alkyne "click" reactions. Fluorescent staining and microscopy revealed that metabolic incorporation of AzC into primary white blood cells was unexpectedly enhanced by the DNA polymerase inhibitor aphidicholine. According to RNaseH digestion and pull-down-and-release experiments, AzC was incorporated into short RNA fragments bound to DNA in peripheral blood monocytes (PBMCs) collected from all six healthy human donors tested. Samples from 22 AML patients (French-American-British classes M4 and M5) exhibited much more heterogeneity, with 27% incorporating AzC into RNA and 55% into DNA. The overall survival of AML patients whose samples incorporated AzC into RNA was approximately 3-fold higher as compared to that of the DNA cohort (p ≤ 0.056, χ2 = 3.65). These results suggest that the RNA primers of DNA synthesis are clinically favorable targets of ara-C, and that variable incorporation of nucleoside drugs into DNA versus RNA may enable future patient stratification into treatment-specific subgroups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.