Abstract
Expanding the number of available RNA-binding proteins (RBPs) is vital to establishing posttranscriptional circuits in mammalian cells. We focused on CRISPR-Cas systems and exploited Cas proteins for their versatility as RBPs. The translation of genes encoded in an mRNA becomes regulatable by a Cas protein by inserting a crRNA/sgRNA sequence recognizable by the specific Cas protein into its 5'UTR. These Cas protein-responsive switches vastly expand the available tools in synthetic biology because of the wide range of Cas protein orthologs that can be used as trigger proteins.Here, we describe the design principle of Cas protein-responsive switches, both plasmid and RNA versions, using Streptococcus pyogenes Cas9 (SpCas9) as an example and show an example of its use in mammalian cells, HEK293FT cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.