Abstract

The final step of RNA crystallography involves the fitting of coordinates into electron density maps. The large number of backbone atoms in RNA presents a difficult and tedious challenge, particularly when experimental density is poor. The ERRASER-Phenix pipeline can improve an initial set of RNA coordinates automatically based on a physically realistic model of atomic-level RNA interactions. The pipeline couples diffraction-based refinement in Phenix with the Rosetta-based real-space refinement protocol ERRASER (Enumerative Real-Space Refinement ASsisted by Electron density under Rosetta). The combination of ERRASER and Phenix can improve the geometrical quality of RNA crystallographic models while maintaining or improving the fit to the diffraction data (as measured by R free). Here we present a complete tutorial for running ERRASER-Phenix through the Phenix GUI, from the command-line, and via an application in the Rosetta On-line Server that Includes Everyone (ROSIE).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.