Abstract

Aerobic methane oxidation coupled to denitrification (AME-D) is a promising process for removing nitrate from groundwater and yet its microbial mechanism and ecological implications are not fully understood. This study used RNA stable isotope probing (RNA-SIP) and high-throughput sequencing to identify the micro-organisms that are actively involved in aerobic methane oxidation within a denitrifying biofilm. Two RNA-SIP experiments were conducted to investigate labelling of RNA and methane monooxygenase (pmoA) transcripts when exposed to 13 C-labelled methane over a 96-hour time period and to determine active bacteria involved in methane oxidation in a denitrifying biofilm. A third experiment was performed to ascertain the extent of 13 C labelling of RNA using isotope ratio mass spectrometry (IRMS). All experiments used biofilm from an established packed bed reactor. IRMS confirmed 13 C enrichment of the RNA. The RNA-SIP experiments confirmed selective enrichment by the shift of pmoA transcripts into heavier fractions over time. Finally, high-throughput sequencing identified the active micro-organisms enriched with 13 C. Methanotrophs (Methylovulum spp. and Methylocystis spp.), methylotrophs (Methylotenera spp.) and denitrifiers (Hyphomicrobium spp.) were actively involved in AME-D. This is the first study to use RNA-SIP and high-throughput sequencing to determine the bacteria active within an AME-D community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.