Abstract

BackgroundIn plants, the RNA silencing system functions as an antiviral defense mechanism following its induction with virus-derived double-stranded RNAs. This occurs through the action of RNA silencing components, including Dicer-like (DCL) nucleases, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDR). Plants encode multiple AGOs, DCLs, and RDRs. The functions of these components have been mainly examined in Arabidopsis thaliana and Nicotiana benthamiana. In this study, we investigated the roles of DCL2, DCL4, AGO2, AGO3 and RDR6 in tomato responses to viral infection. For this purpose, we used transgenic tomato plants (Solanum lycopersicum cv. Moneymaker), in which the expression of these genes were suppressed by double-stranded RNA-mediated RNA silencing.MethodsWe previously created multiple DCL (i.e., DCL2 and DCL4) (hpDCL2.4) and RDR6 (hpRDR6) knockdown transgenic tomato plants and here additionally did multiple AGO (i.e., AGO2 and AGO3) knockdown plants (hpAGO2.3), in which double-stranded RNAs cognate to these genes were expressed to induce RNA silencing to them. Potato virus X (PVX) and Y (PVY) were inoculated onto these transgenic tomato plants, and the reactions of these plants to the viruses were investigated. In addition to observation of symptoms, viral coat protein and genomic RNA were detected by western and northern blotting and reverse transcription-polymerase chain reaction (RT-PCR). Host mRNA levels were investigated by quantitative RT-PCR.ResultsFollowing inoculation with PVX, hpDCL2.4 plants developed a more severe systemic mosaic with leaf curling compared with the other inoculated plants. Systemic necrosis was also observed in hpAGO2.3 plants. Despite the difference in the severity of symptoms, the accumulation of PVX coat protein (CP) and genomic RNA in the uninoculated upper leaves was not obviously different among hpDCL2.4, hpRDR6, and hpAGO2.3 plants and the empty vector-transformed plants. Moneymaker tomato plants were asymptomatic after infection with PVY. However, hpDCL2.4 plants inoculated with PVY developed symptoms, including leaf curling. Consistently, PVY CP was detected in the uninoculated symptomatic upper leaves of hpDCL2.4 plants through western blotting. Of note, PVY CP was rarely detected in other asymptomatic transgenic or wild-type plants. However, PVY was detected in the uninoculated upper leaves of all the inoculated plants using reverse transcription-polymerase chain reactions. These findings indicated that PVY systemically infected asymptomatic Moneymaker tomato plants at a low level (i.e., no detection of CP via western blotting).ConclusionOur results indicate that the tomato cultivar Moneymaker is susceptible to PVX and shows mild mosaic symptoms, whereas it is tolerant and asymptomatic to systemic PVY infection with a low virus titer. In contrast, in hpDCL2.4 plants, PVX-induced symptoms became more severe and PVY infection caused symptoms. These results indicate that DCL2, DCL4, or both contribute to tolerance to infection with PVX and PVY. PVY CP and genomic RNA accumulated to a greater extent in DCL2.4-knockdown plants. Hence, the contribution of these DCLs to tolerance to infection with PVY is at least partly attributed to their roles in anti-viral RNA silencing, which controls the multiplication of PVY in tomato plants. The necrotic symptoms observed in the PVX-infected hpAGO2.3 plants suggest that AGO2, AGO3 or both are also distinctly involved in tolerance to infection with PVX.

Highlights

  • In plants, the RNA silencing system functions as an antiviral defense mechanism following its induction with virus-derived double-stranded RNAs

  • In hpDCL2.4 plants, Potato virus X (PVX)-induced symptoms became more severe and Potato virus Y (PVY) infection caused symptoms. These results indicate that DCL2, DCL4, or both contribute to tolerance to infection with PVX and PVY

  • The necrotic symptoms observed in the PVX-infected hpAGO2.3 plants suggest that AGO2, AGO3 or both are distinctly involved in tolerance to infection with PVX

Read more

Summary

Introduction

The plant RNA silencing-based defense enlists a complex set of proteins to combat intracellular parasites, including viruses, retrotransposons, and other highly repetitive genome elements [1] This defense cascade is commonly triggered by intracellularly formed double-stranded RNA (dsRNA) or partially double-stranded stem-loop RNA. SiRNAs are not the end product of the cascade Rather, they are the sequence specificity determinants of RNAinduced silencing complexes (RISC), directing Argonaute (AGO) proteins in RISC to cellular RNA or DNA complementary to the siRNAs. Rather, they are the sequence specificity determinants of RNAinduced silencing complexes (RISC), directing Argonaute (AGO) proteins in RISC to cellular RNA or DNA complementary to the siRNAs This process silences corresponding genes or genetic elements through targeted cleavage, repression of translation, or DNA methylation [2, 3]. In some eukaryotes, such as plants and fungi, cellular RNA-dependent RNA polymerase (RDR) acts to convert aberrant RNAs to dsRNA, leading to small RNA amplification and more intensive RNA silencing [4,5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call