Abstract
Pulmonary fibrosis is characterized by pathological accumulation of scar tissue in the lung parenchyma. Many of the processes that are implicated in fibrosis, including increased extracellular matrix synthesis, also occur following pneumonectomy (PNX), but PNX instead results in regenerative compensatory growth of the lung. As fibroblasts are the major cell type responsible for extracellular matrix production, we hypothesized that comparing fibroblast responses to PNX and bleomycin (BLM) would unveil key differences in the role they play during regenerative versus fibrotic lung responses. RNA-sequencing was performed on flow-sorted fibroblasts freshly isolated from mouse lungs 14 days after BLM, PNX, or sham controls. RNA-sequencing analysis revealed highly similar biological processes to be involved in fibroblast responses to both BLM and PNX, including TGF-β1 and TNF-α. Interestingly, we observed smaller changes in gene expression after PNX than BLM at Day 14, suggesting that the fibroblast response to PNX may be muted by expression of transcripts that moderate pro-fibrotic pathways. Itpkc, encoding inositol triphosphate kinase C, was a gene uniquely up-regulated by PNX and not BLM. ITPKC overexpression in lung fibroblasts antagonized the pro-fibrotic effect of TGF-β1. RNA-sequencing analysis has identified considerable overlap in transcriptional changes between fibroblasts following PNX and those overexpressing ITPKC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.