Abstract

Background Damage to the coronary arteries during the acute phase of Kawasaki disease (KD) is linked to inflammatory cell infiltration, myointimal proliferation, and endothelial cell (EC) dysfunction. To understand the response of ECs to KD treatment, we studied the genome-wide transcriptional changes in cultured ECs incubated with KD sera before and after treatment with or without atorvastatin. Methods and Results RNA sequencing of human umbilical vein ECs incubated with pooled sera from patients with acute KD before or after treatment with intravenous immunoglobulin and infliximab revealed differentially expressed genes in interleukin-1, tumor necrosis factor-α, and inflammatory cell recruitment pathways. Subacute sera pooled from patients treated with intravenous immunoglobulin, infliximab, and atorvastatin uniquely induced expression of NOS3, Kruppel like factor (KLF2, and KLF4 (promotes EC homeostasis and angiogenesis) and ZFP36 ring finger protein (ZFP36) and suppressor of cytokine signaling 3 (SOCS3) (suppresses inflammation), and suppressed expression of TGFB2 and DKK1 (induces endothelial-mesenchymal transition) and sphingosine kinase 1 (SPHK1) and C-X-C motif chemokine ligand 8 (CXCL8) (induces inflammation). Conclusions These results suggest that atorvastatin treatment of patients with acute KD may improve EC health, reduce mediators of inflammation produced by ECs, and block KD-induced myofibroblast proliferation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call