Abstract
Both Xp11 translocation renal cell carcinomas and the corresponding mesenchymal neoplasms are characterized by a variety of gene fusions involving TFE3. It has been known that tumors with different gene fusions may have different clinicopathologic features; however, further in-depth investigations of subtyping Xp11 translocation-associated cancers are needed in order to explore more meaningful clinicopathologic correlations. A total of 22 unusual cases of Xp11 translocation-associated cancers were selected for the current study; 20 cases were further analyzed by RNA sequencing to explore their TFE3 gene fusion partners. RNA sequencing identified 17 of 20 cases (85%) with TFE3-associated gene fusions, including 4 ASPSCR1/ASPL-TFE3, 3 PRCC-TFE3, 3 SFPQ/PSF-TFE3, 1 NONO-TFE3, 4 MED15-TFE3, 1 MATR3-TFE3, and 1 FUBP1-TFE3. The results have been verified by fusion fluorescence in situ hybridization (FISH) assays or reverse transcriptase polymerase chain reaction (RT-PCR). The remaining 2 cases with specific pathologic features highly suggestive of MED15-TFE3 renal cell carcinoma were identified by fusion FISH assay. We provide the detailed morphologic and immunophenotypic description of the MED15-TFE3 renal cell carcinomas, which frequently demonstrate extensively cystic architecture, similar to multilocular cystic renal neoplasm of low malignant potential, and expressed cathepsin K and melanotic biomarker Melan A. This is the first time to correlate the MED15-TFE3 renal cell carcinoma with specific clinicopathologic features. We also report the first case of the corresponding mesenchymal neoplasm with MED15-TFE3 gene fusion. Additional novel TFE3 gene fusion partners, MATR3 and FUBP1, were identified. Cases with ASPSCR1-TFE3, SFPQ-TFE3, PRCC-TFE3, and NONO-TFE3 gene fusion showed a wide variability in morphologic features, including invasive tubulopapillary pattern simulating collecting duct carcinoma, extensive calcification and ossification, and overlapping and high columnar cells with nuclear grooves mimicking tall cell variant of papillary thyroid carcinoma. Furthermore, we respectively evaluated the ability of TFE3 immunohistochemistry, TFE3 FISH, RT-PCR, and RNA sequencing to subclassify Xp11 translocation-associated cancers. In summary, our study expands the list of TFE3 gene fusion partners and the clinicopathologic features of Xp11 translocation-associated cancers, and highlights the importance of subtyping Xp11 translocation-associated cancers combining morphology, immunohistochemistry, and multiple molecular techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.