Abstract

The regulation of crassulacean acid metabolism (CAM) pathway has recently become a topic of intensive research and has been explored in terms of several aspects, including phylogenetics, genomics, and transcriptomics. Orchidaceae, which contains approximately 9,000 CAM species, is one of the largest lineages using this special photosynthetic pathway. However, no comprehensive transcriptomic profiling focused on CAM regulation in orchid species had previously been performed. In this report, we present two Illumina RNA-seq datasets, including a total of 24 mature leaf samples with 844.4 million reads, from Dendrobium catenatum (Orchidaceae), a facultative CAM species. The first dataset was generated from a time-course experiment based on the typical CAM phases in a diel. The second was derived from an experiment on drought stress and stress removal. A series of quality assessments were conducted to verify the reliability of the datasets. These transcriptomic profiling datasets will be useful to explore and understand the essence of CAM regulation.

Highlights

  • Background & SummaryCrassulacean acid metabolism (CAM) is the most important photosynthetic physiology by which plants adapt to seasonal water-limiting areas

  • The core crassulacean acid metabolism (CAM) pathway has been delineated in detail[5], the regulatory mechanisms of these and other associated processes, including stomatal movement, carbohydrate metabolism, and transmembrane transport under circadian rhythms, remain largely unknown

  • The following parameters were set for the equipment with a double-sided transparent leaf cuvette: photosynthetic photon flux density (PPFD), natural light; cuvette temperature inside, synced with the outside; CO2 concentration, atmosphere; flow rate, 200 μmol s−1; and cuvette fan speed, fast

Read more

Summary

Background & Summary

Crassulacean acid metabolism (CAM) is the most important photosynthetic physiology by which plants adapt to seasonal water-limiting areas. The first experiment aimed to collect the gene expression profile (Dataset I) for CAM and the operation of associated pathways in a diel with four typical phases (Fig. 1a); the second aimed to record the gene expression profile (Dataset II) during the alternation of day and night under drought stress and upon stress removal (Fig. 1b). These experiments yielded 24 samples with a total of 844.4 million reads of transcriptome data from mature leaves (Data Citation 1). We believe that these profiles will help to deepen the comprehensive understanding of the essence of CAM regulation

Design and sample collection of experiment I
Data Records
Technical Validation RNA qualities
Data Citations
Author Contributions
Findings
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.