Abstract

The prevalence of bone deformities, particularly linked with mineral deficiency, is an important issue for fish production. Juvenile triploid rainbow trout (Oncorhynchus mykiss) were fed a low-phosphorus (P) diet for 27 weeks (60 to 630 g body mass). At study termination, 24.9% of the fish fed the low-P diet displayed homogeneous biconcave vertebrae (deformed vertebrae phenotype), while 5.5% displayed normal vertebral phenotypes for the entire experiment. The aim of our study was to characterize the deformed phenotype and identify the putative genes involved in the appearance of P deficiency-induced deformities. Both P status and biomechanical measurements showed that deformed vertebrae were significantly less mineralized (55.0 ± 0.4 and 59.4 ± 0.5,% ash DM, for deformed and normal vertebrae, respectively) resulting in a lower stiffness (80.3 ± 9.0 and 140.2 ± 6.3 N/mm, for deformed and normal phenotypes, respectively). The bone profiles based on μCT observations showed no difference in the osteoclastic resorption while no difference in matrix production was observed between deformed (total bone area 5442.0 ± 110.1 μm2) and normal vertebrae (total bone area 5931.2 ± 249.8 μm2) in this study. Consequently, the lower P content rather results from a reduced degree of mineralization in the deformed phenotype. Finally, we quantified differential gene expression between deformed vertebrae (pronounced biconcave) and normal phenotype by employing deep RNA-sequencing and mapping against a reference bone transcriptome for rainbow trout. In total, 1289 genes were differentially expressed. Among them, in deformed fish we observed that BGLAP, MGP and NOG, an inhibitor of BMP signalling pathway, were up-regulated while COL11a1 was down-regulated. These genes are central actors involved in the reduced degree of mineralization triggering vertebral deformities. These results will further the understanding of P deficiency-induced deformities; hence providing new tools for improved P management in production settings

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.