Abstract

Methionine (Met) can activate the mechanistic target of rapamycin (mTOR) to promote milk synthesis in mammary epithelial cells. However, it is largely unknown which G protein-coupled receptor can mediate the stimulation of Met on mTOR activation. In this study, we employed transcriptome sequencing to analyse which G protein-coupled receptors were associated with the role of Met and further used gene function study approaches to explore the role of G protein-coupled receptor 183 (GPR183) in Met stimulation on mTOR activation in HC11 cells. We identified nine G protein-coupled receptors including GPR183 whose expression levels were upregulated by Met treatment through RNA sequencing and subsequent quantitative real-time PCR analysis. Using GPR183 knockdown and overexpression technology, we demonstrate that GPR183 is a positive regulator of milk protein and fat synthesis and proliferation of HC11 cells. Met affected GPR183 expression in a dose-dependent manner, and GPR183 mediated the stimulation of Met (0·6 mM) on milk protein and fat synthesis, cell proliferation and mTOR phosphorylation and mRNA expression. The inhibition of phosphoinositide 3-kinase blocked the phosphorylation of mTOR and AKT stimulated by GPR183 activation. In summary, through RNA sequencing and gene function study, we uncover that GPR183 is a key mediator for Met to activate the phosphoinositide 3-kinase-mTOR signalling and milk synthesis in mouse mammary epithelial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.