Abstract

Eggplant (Solanum melongena) is a major vegetable crop worldwide. However, it is susceptible to bacterial wilt (BW) caused by Ralstonia solanacearum, which has become an important factor limiting eggplant yield and quality. The underlying mechanism of BW remains unknown. Here, RNA-sequencing was used to characterize the transcriptomes of resistant (R) and susceptible (S) strains before (R0, S0) and after (R1, S1) R. solanacearum inoculation. After the removal of low-quality sequences and assembly, 125,852 contigs, 122,508 transcripts, and 68,792 unigenes were identified, with 51,165 non-redundant unigenes annotated. Functional annotations were provided for 11,039 unigenes using four databases (NCBI Nr, Swissprot, KEGG and COG database). A total of 1137 and 9048 genes were found to be up- and down-regulated, respectively, in R0 relative to R1 samples, with 738 and 217 up- and down-regulated in S0 relative to R0 samples, 6087 and 5832 up- and down-regulated in S0 relative to S1 samples, and 4712 and 12,523 up- and down-regulated in S1 relative to R1 samples, respectively. In conclusion, our results provide useful insights into the potential mechanism of BW and are an important basis for further analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.