Abstract

BackgroundBrassica rapa (AA) contains very diverse forms which include oleiferous types and many vegetable types. Genome sequence of B. rapa line Chiifu (ssp. pekinensis), a leafy vegetable type, was published in 2011. Using this knowledge, it is important to develop genomic resources for the oleiferous types of B. rapa. This will allow more involved molecular mapping, in-depth study of molecular mechanisms underlying important agronomic traits and introgression of traits from B. rapa to major oilseed crops - B. juncea (AABB) and B. napus (AACC). The study explores the availability of SNPs in RNA-seq generated contigs of three oleiferous lines of B. rapa - Candle (ssp. oleifera, turnip rape), YSPB-24 and Tetra (ssp. trilocularis, Yellow sarson) and their use in genome-wide linkage mapping and specific-region fine mapping using a RIL population between Chiifu and Tetra.ResultsRNA-seq was carried out on the RNA isolated from young inflorescences containing unopened floral buds, floral axis and small leaves, using Illumina paired-end sequencing technology. Sequence assembly was carried out using the Velvet de-novo programme and the assembled contigs were organised against Chiifu gene models, available in the BRAD-CDS database. RNA-seq confirmed the presence of more than 17,000 single-copy gene models described in the BRAD database. The assembled contigs and the BRAD gene models were analyzed for the presence of SSRs and SNPs. While the number of SSRs was limited, more than 0.2 million SNPs were observed between Chiifu and the three oleiferous lines. Assays for SNPs were designed using KASPar technology and tested on a F7-RIL population derived from a Chiifu x Tetra cross. The design of the SNP assays were based on three considerations - the 50 bp flanking region of the SNPs should be strictly similar, the SNP should have a read-depth of ≥7 and no exon/intron junction should be present within the 101 bp target region. Using these criteria, a total of 640 markers (580 for genome-wide mapping and 60 for specific-region mapping) marking as many genes were tested for mapping. Out of 640 markers that were tested, 594 markers could be mapped unambiguously which included 542 markers for genome-wide mapping and 42 markers for fine mapping of the tet-o locus that is involved with the trait tetralocular ovary in the line Tetra.ConclusionA large number of SNPs and PSVs are present in the transcriptome of B. rapa lines for genome-wide linkage mapping and specific-region fine mapping. Criteria used for SNP identification delivered markers, more than 93% of which could be successfully mapped to the F7–RIL population of Chiifu x Tetra cross.

Highlights

  • Brassica rapa (AA) contains very diverse forms which include oleiferous types and many vegetable types

  • Sequencing samples of Tetra, YSPB-24 and Candle were run in two lanes of the flow cell for sequencing whereas Chiifu sample was run in only one lane

  • As information on more than 98% of the gene space is available for Chiifu and has been organized as Coding DNA Sequences (CDS) in the BRAD database [8], the limited Chiifu transcriptome sequencing was carried out to check the overall quality of the assembly of the raw sequencing data obtained in this study

Read more

Summary

Introduction

Brassica rapa (AA) contains very diverse forms which include oleiferous types and many vegetable types. Genome sequence of B. rapa line Chiifu Pekinensis), a leafy vegetable type, was published in 2011 Using this knowledge, it is important to develop genomic resources for the oleiferous types of B. rapa. It is important to develop genomic resources for the oleiferous types of B. rapa This will allow more involved molecular mapping, in-depth study of molecular mechanisms underlying important agronomic traits and introgression of traits from B. rapa to major oilseed crops - B. juncea (AABB) and B. napus (AACC). The study explores the availability of SNPs in RNA-seq generated contigs of three oleiferous lines of B. rapa - Candle NGS technologies have contributed to completion of reference genome sequences of many important crops [2,3].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.