Abstract

The formation of the anterior pattern of the Drosophila embryo is dependent on the localization of the mRNA of the morphogen Bicoid (bcd) to the anterior pole of the egg cell. Staufen protein (STAU) is required in a late step of the localization to anchor the bcd mRNA in the anterior cytoplasm. We have shown previously that endogenous STAU associates specifically with injected bcd mRNA 3'-untranslated region (UTR), resulting in the formation of characteristic RNA-protein particles that are transported along microtubules of the mitotic spindles in a directed manner. The regions recognized by STAU in this in vivo assay are predicted to form three stem-loop structures involving large double-stranded stretches. Here, we show that the STAU interaction requires a double-stranded conformation of the stems within the RNA localization signal. In addition, base pairing between two single-stranded loops plays a major role in particle formation. This loop-loop interaction is intermolecular, not intramolecular; thus dimers or multimers of the RNA localization signal must be associated with STAU in these particles. The bcd mRNA 3' UTR can also dimerize in vitro in the absence of STAU. Thus, in addition to RNA-protein interactions, RNA-RNA interaction might be involved in the formation of ribonucleoprotein particles for transport and localization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call