Abstract

One of the most common structural motifs in RNA-binding proteins is the RNA-binding domain (RBD). These domains share a common α/β sandwich tertiary fold, and are highly conserved, though they bind diverse RNA targets with a wide range of binding affinities. The N-terminal RNA-binding domain (RBD1) of the human U1A protein binds specifically to stem/loop II of the U1 snRNA with sub-nanomolar affinity. Solvent-exposed aromatic residues on the β-sheet surface are highly conserved among RBD domains; in RBD1, these are Tyr13 and Phe56, with a unique Gln at position 54. Effects of substitutions at these positions were examined using energetic pairwise coupling to describe the communication between these residues in both the free and RNA-bound states of the protein. 15N NMR experiments were used to determine effects of the β-sheet substitutions on the structural and dynamic properties of this domain. The combination of thermodynamic pairwise coupling and 15N-backbone dynamics provides direct evidence for local cooperative interactions among Y13, Q54, and F56, and a non-conserved loop that directly affect RNA-binding. The results describe how conserved and non-conserved regions of an RBD can communicate with each other to mediate recognition of the RNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call