Abstract

BackgroundMean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth.ResultsIt was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms.ConclusionOur results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans.

Highlights

  • Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores

  • As a result of this allocation, the P:N ratio in the cell increases. This idea is referred to as the growth-rate hypothesis (GRH) [5,6,7]. In agreement with this hypothesis, the synthesis of rRNA in bacteria is maintained in proportion to the cell's requirement, and the number of rRNA genes correlate with the rate at which phylogenetically diverse bacteria respond to resource availability [8,9]

  • P:N ratios calculated from RNA and protein contents of the unicellular organisms are in the same range as found in the primary producers and have similar relationships with growth rate Experimental data for the analysis were obtained from previous studies of macromolecular composition of bacteria (E. coli, Streptomyces coelicolor, Mycobacterium bovis, Selenomonas ruminantium), budding yeast (Saccharomyces cerevisiae; two studies), fungi (Neurospora crassa) and algae (Prototheca zopfii ) (Table 1)

Read more

Summary

Introduction

Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. Microorganisms are flexible in their nitrogen (N) and phosphorus (P) content because of their ability to store these nutrients, the mean P:N ratios and their variations indicate surprising similarity among and within microbial species and even with plants and insect herbivores. As a result of this allocation, the P:N ratio in the cell increases This idea is referred to as the growth-rate hypothesis (GRH) [5,6,7]. Species-specific growth rates may be estimated by measuring the rRNA content of the organisms [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call