Abstract
Mutations in Escherichia coli rpoB or rpoC, selected for the ability to confer prototrophy on relA spoT strains, were found to affect transcription from rrn P1 promoters. Two mutant strains (β RH454 and β′ Δ215-220) reduced transcription of rrn P1 core promoter- lacZ fusions but not of control promoter- lacZ fusions. Purified mutant RNAPs formed complexes with rrn P1 promoters that were much less stable than those formed by wild-type RNAP and required high concentrations of the initiating NTP for efficient rrn P1 transcription. The instability of the rrn P1 core promoter complexes with the mutant RNAPs and their altered regulatory properties support a recently proposed model for the control of rRNA transcription by changing concentrations of the initiating NTPs. We further suggest that destabilization of promoter complexes by the mutant RNAPs mimics effects of ppGpp, decreasing or increasing transcription depending on the kinetic properties of the specific promoter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.