Abstract

RNA polymerase I was isolated from parsley cells grown in suspension culture and from soybean hypocotyls. Kinetic studies of the enzyme revealed that RNA polymerase I is an allosteric regulated enzyme. The enzyme activity was influenced by nucleoside triphosphates (NTP) and divalent cations. NTP exceeding a 1:1 ratio of these two components acted as allosteric inhibitors, contrary to free divalent cations, which had promotive effects on the RNA polymerase I. Furthermore, isolated nuclei from parsley exhibited a powerful nucleoside triphosphatase (NTPase) activity. Contrary to RNA polymerase I, this enzyme was stimulated by NTP exceeding the 1:1 ratio of NTP and divalent cations. Free divalent cations had an inhibitory effect. Assuming that a causal connection of these two processes does exist, a possible role of this NTPase would be the control of NTP pools in relation to divalent cations and thus regulating RNA synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.