Abstract

AbstractFor the emergence of life, the abiotic synthesis of RNA from its monomers is a central step. We found that in alkaline, drying conditions in bulk and at heated air‐water interfaces, 2′,3′‐cyclic nucleotides oligomerised without additional catalyst, forming up to 10‐mers within a day. The oligomerisation proceeded at a pH range of 7–12, at temperatures between 40–80 °C and was marginally enhanced by K+ ions. Among the canonical ribonucleotides, cGMP oligomerised most efficiently. Quantification was performed using HPLC coupled to ESI‐TOF by fitting the isotope distribution to the mass spectra. Our study suggests a oligomerisation mechanism where cGMP aids the incorporation of the relatively unreactive nucleotides C, A and U. The 2′,3′‐cyclic ribonucleotides are byproducts of prebiotic phosphorylation, nucleotide syntheses and RNA hydrolysis, indicating direct recycling pathways. The simple reaction condition offers a plausible entry point for RNA to the evolution of life on early Earth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call