Abstract

Cold stress is a serious threat to subtropical crop pollen development and induces yield decline. N6-methyladenosine (m6A) is the most frequent mRNA modification and plays multiple physiological functions in plant development. However, whether m6A regulates pollen development is unclear, and its putative role in cold stress response remains unknown. Here, we observed that moderate low-temperature (MLT) stress induced pollen abortion in tomato. This phenotype was caused by disruption of tapetum development and pollen exine formation, accompanied by reduced m6A levels in tomato anther. Analysis of m6A-seq data revealed 1,805 transcripts displayed reduced m6A levels and 978 transcripts showed elevated m6A levels in MLT-stressed anthers compared with those in anthers under normal temperature. These differentially m6A enriched transcripts under MLT stress were mainly related to lipid metabolism, adenosine triphosphatase (ATPase) activity, and ATP-binding pathways. An ATP-binding transcript, SlABCG31, had significantly upregulated m6A modification levels, which was inversely correlated to the dramatically downregulated expression level. These changes correlated with higher abscisic acid (ABA) levels in anthers and disrupted pollen wall formation under low-temperature stress. Our findings characterized m6A as a novel layer of complexity in gene expression regulation and established a molecular link between m6A methylation and tomato anther development under low-temperature conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.