Abstract

Virus-specific RNA sequences were detected in mouse cells infected with murine leukemia virus by hybridization with radioactively labeled DNA complementary to Moloney murine leukemia virus RNA. The DNA was synthesized in vitro using the endogenous virion RNA-dependent DNA polymerase and the DNA product was characterized by size and its ability to protect radioactive viral RNA. Virus-specific RNA sequences were found in two lines of leukemia virus-infected cells (JLS-V11 and SCRF 60A) and also in an uninfected line (JLS-V9). Approximately 0.3% of the cytoplasmic RNA in JLS-VII cells was virus-specific and 0.9% of SCRF 60A cell RNA was virus-specific. JLS-V9 cells contained approximately tenfold less virus-specific RNA than infected JLS-VII cells. Moloney leukemia virus DNA completely annealed to JLS-VII or SCRF 60A RNA but only partial annealing was observed with JLS-V9 RNA. This difference is ascribed to non-homologies between the RNA sequences of Moloney virus and the endogenous virus of JLS-V9 cells. Virus-specific RNA was found to exist in infected cells in three major size classes: 60–70 S RNA, 35 S RNA and 20–30 S RNA. The 60–70 S RNA was apparently primarily at the cell surface, since agents which remove material from the cell surface were effective in removing a majority of the 60–70 S RNA. The 35 S and 20–30 S RNA is relatively unaffected by these procedures. Sub-fractionation of the cytoplasm indicated that approximately 35% of the cytoplasmic virus-specific RNA in infected cells is contained in the membrane-bound material. The membrane-bound virus-specific RNA consists of some residual 60–70 S RNA and 35 S RNA, but very little 20–30 S RNA. Virus-specific messenger RNA was identified in polyribosome gradients of infected cell cytoplasm. Messenger RNA was differentiated from other virus-specific RNAs by the criterion that virus-specific messenger RNA must change in sedimentation rate following polyribosome disaggregation. Two procedures for polyribosome disaggregation were used: treatment with EDTA and in vitro incubation of polyribosomes with puromycin in conditions of high ionic strength. As identified by this criterion, the virus-specific messenger RNA appeared to be mostly 35 S RNA. No function for the 20–30 S was determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call