Abstract

The bacterial RNA polymerase (RNAP) holoenzyme consists of a catalytic core enzyme (alpha(2)betabeta'omega) complexed with a sigma factor that is required for promoter-specific transcription initiation. During early elongation, the stability of interactions between sigma(70) (the primary sigma factor in Escherichia coli) and core decreases due to an ordered displacement of segments of sigma(70) from core triggered by growth of the nascent RNA. Here we demonstrate that the nascent RNA-mediated destabilization of an interaction between sigma(70) region 4 and the flap domain of the beta subunit is required for the bacteriophage lambda Q antiterminator protein to contact holoenzyme during early elongation. We demonstrate further that the requirement for nascent RNA in the process by which Q engages RNAP can be bypassed if sigma(70) region 4 is removed. Our findings illustrate how a regulator can exploit the nascent RNA-mediated reconfiguration of the holoenzyme to gain access to the enzyme during early elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.