Abstract

RNA interference (RNAi) is a widespread post-transcriptional silencing mechanism that targets homologous mRNA sequences for specific degradation. An RNAi-based pest management strategy is target-specific and considered a sustainable biopesticide. However, the specific genes targeted and the efficiency of the delivery methods can vary widely across species. In this study, a spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) system that incorporated gene-specific dsRNAs targeting conserved genes was used to evaluate phenotypic effects in white-backed planthopper (WBPH). At 2 days postspraying, transcript levels for all target genes were significantly reduced and knockdown of two gene orthologs, hsc70-3 and PP-α, resulted in an elevated mortality (>60%) and impaired ecdysis. These results highlight the utility of the SI-NDGS system for identifying genes involved in WBPH growth and development that could be potentially exploitable as high mortality target genes to develop an alternative method for WBPH control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call