Abstract

The whitefly Bemisia tabaci (Gennadius) is considered one of the main pests for agriculture. One important problem with the whitefly is its notorious status as a vector for plant viruses, primarily begomoviruses. We have previously identified a defensin-like antimicrobial peptide, Btdef, from the whitefly B. tabaci MEAM1. However, the function of Btdef in the immune system of the insect vector and begomovirus transmission has yet to be explored. To explore the role of Btdef during begomovirus transmission, we firstly investigated the transcriptional response of Btdef following acquisition of Tomato yellow leaf curl China virus (TYLCCNV). The expression of Btdef was up-regulated in the viruliferous whiteflies. After RNA silencing of the Btdef gene in adult whiteflies fed with dsRNA, they were allowed to feed on TYLCCNV-infected plants and then quantified for TYLCCNV DNA titre. Unexpectedly, silencing the Btdef gene reduced both the abundance and expressions of TYLCCNV genes in the whiteflies. In the meantime, the density of the endosymbiont Rickettsia was significantly reduced in dsBtdef-fed whiteflies. Our data provide evidence that Btdef is involved in begomovirus infection, possibly through symbiont-mediated alteration of begomovirus-whitefly interactions. These findings indicate that Btdef may be targeted for the development of new technology for the control of whitefly-transmitted begomoviruses. © 2016 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.