Abstract

RNA interference (RNAi) may be induced by a plasmid with an inverted repeat (IR) sequence directing transcription of hairpin-type double-stranded RNA (dsRNA). This study examines the effects of changing various parameters of IR constructs on Drosophila and mammalian RNAi, using the dual luciferase system. RNAi activity was found to vary depending on IR length as well as the length and sequence of the internal loop separating sense and antisense sequences. Both transient and stable RNAi occurred in Drosophila cultured cells. Although transient DNA-mediated RNAi was noted in most mammalian cells, no mammalian cells stably possessing IR sequences and hence RNAi activity could be obtained. In Drosophila, DNA-mediated RNAi was considerably weaker than long-dsRNA-mediated RNAi. The cytological data indicated that this was most probably caused by abortive processing of hairpin RNA produced within cells. DNA-mediated RNAi was examined at the level of Drosophila individuals using extramacrochaetae as a model gene, and the presence of an intron sequence in the single-stranded loop region was shown to be essential for effective RNAi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.