Abstract

Human immunodeficiency virus type 1 (HIV-1) gene expression is regulated by both cellular transcription factors and Tat. The ability of Tat to stimulate transcriptional elongation is dependent on its binding to TAR RNA in conjunction with cyclin T1 and CDK9. A variety of other cellular factors that bind to the HIV-1 long terminal repeat, including NF-kappaB, SP1, LBP, and LEF, are also important in the control of HIV-1 gene expression. Although these factors have been demonstrated to regulate HIV-1 gene expression by both genetic and biochemical analysis, in most cases a direct in vivo demonstration of their role on HIV-1 replication has not been established. Recently, the efficacy of RNA interference in mammalian cells has been shown utilizing small interfering RNAs (siRNAs) to result in the specific degradation of host mRNAs and decreases the levels of their corresponding proteins. In this study, we addressed whether siRNAs directed against either HIV-1 tat or reverse transcriptase or the NF-kappaB p65 subunit could specifically decrease the levels of these proteins and thus alter HIV-1 replication. Our results demonstrate the specificity of siRNAs for decreasing the expression of these viral and cellular proteins and inhibiting HIV-1 replication. These studies suggest that RNA interference is useful in exploring the biological role of cellular and viral regulatory factors involved in the control of HIV-1 gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.