Abstract

Right ventricular (RV) dysfunction induced type II cardiorenal syndrome (CRS) has a high mortality rate, but little attention has been paid to this disease, and its unique molecular characteristics remain unclear. This study aims to investigate the transcriptomic expression profile in this disease and identify key RNA pairs that regulate related molecular signaling networks. We established an RV dysfunction-induced type II CRS mouse model by pulmonary artery constriction (PAC). PAC mice developed severe RV hypertrophy and fibrosis; renal atrophy and dysfunction with elevated creatinine were subsequently observed. Expression profiles in RV and kidney tissues were obtained by whole transcriptome sequencing, revealing a total of 741 and 86 differentially expressed (DE) mRNAs, 159 and 29 DEmiRNAs and 233 and 104 DEcircRNAs between RV and kidney tissue, respectively. Competing endogenous RNA (ceRNA) networks were established. A significant alteration in proliferative, fibrotic and metabolic pathways was found based on GO and KEGG analyses, and the network revealed key ceRNA pairs, such as novel_circ_002631/miR-181a-5p/Creb1 and novel_circ_002631/miR-33-y/Kpan6. These findings indicate that significantly dysregulated pathways in RV dysfunction induced type II CRS include Ras, PI3K/Akt, cGMP-PKG pathways, and thyroid metabolic pathways. These ceRNA pairs can be considered potential targets for the treatment of type II CRS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.