Abstract

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. RNA-binding proteins are identified as regulators of cardiac disease; DDX5 (dead-box helicase 5) is a master regulator of many RNA processes, although its function in heart physiology remains unclear. We assessed DDX5 expression in human failing hearts and a mouse HF model. To study the function of DDX5 in heart, we engineered cardiomyocyte-specific Ddx5 knockout mice. We overexpressed DDX5 in cardiomyocytes using adeno-associated virus serotype 9 and performed transverse aortic constriction to establish the murine HF model. The mechanisms underlined were subsequently investigated using immunoprecipitation-mass spectrometry, RNA-sequencing, alternative splicing analysis, and RNA immunoprecipitation sequencing. We screened transcriptome databases of murine HF and human dilated cardiomyopathy samples and found that DDX5 was significantly downregulated in both. Cardiomyocyte-specific deletion of Ddx5 resulted in HF with reduced cardiac function, an enlarged heart chamber, and increased fibrosis in mice. DDX5 overexpression improved cardiac function and protected against adverse cardiac remodeling in mice with transverse aortic constriction-induced HF. Furthermore, proteomics revealed that DDX5 is involved in RNA splicing in cardiomyocytes. We found that DDX5 regulated the aberrant splicing of Ca2+/calmodulin-dependent protein kinase IIδ (CamkIIδ), thus preventing the production of CaMKIIδA, which phosphorylates L-type calcium channel by serine residues of Cacna1c, leading to impaired Ca2+ homeostasis. In line with this, we found increased intracellular Ca2+ transients and increased sarcoplasmic reticulum Ca2+ content in DDX5-depleted cardiomyocytes. Using adeno-associated virus serotype 9 knockdown of CaMKIIδA partially rescued the cardiac dysfunction and HF in Ddx5 knockout mice. These findings reveal a role for DDX5 in maintaining calcium homeostasis and cardiac function by regulating alternative splicing in cardiomyocytes, identifying the DDX5 as a potential target for therapeutic intervention in HF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.