Abstract

RNA-binding proteins (RBPs), in addition to their functions in cellular homeostasis, play important roles in lineage specification and maintaining cellular identity. Despite their diverse and essential functions, which touch on nearly all aspects of RNA metabolism, the roles of RBPs in somatic cell reprogramming are poorly understood. Here we show that the DEAD-box RBP DDX5 inhibits reprogramming by repressing the expression and function of the non-canonical polycomb complex 1 (PRC1) subunit RYBP. Disrupting Ddx5 expression improves the efficiency of iPSC generation and impedes processing of miR-125b, leading to Rybp upregulation and suppression of lineage-specific genes via RYBP-dependent ubiquitination of H2AK119. Furthermore, RYBP is required for PRC1-independent recruitment of OCT4 to the promoter of Kdm2b, a histone demethylase gene that promotes reprogramming by reactivating endogenous pluripotency genes. Together, these results reveal important functions of DDX5 in regulating reprogramming and highlight the importance of a Ddx5-miR125b-Rybp axis in controlling cell fate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.