Abstract

From its discovery as an adaptive bacterial and archaea immune system, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system has quickly been developed into a powerful and groundbreaking programmable nuclease technology for the global and precise editing of the genome in cells. This system allows for comprehensive unbiased functional studies and is already advancing the field by revealing genes that have previously unknown roles in disease processes. In this review, we examine and compare recently developed CRISPR-Cas platforms for global genome editing and examine the advancements these platforms have made in guide RNA design, guide RNA/Cas9 interaction, on-target specificity, and target sequence selection. We also explore some of the exciting therapeutic potentials of the CRISPR-Cas technology as well as some of the innovative new uses of this technology beyond genome editing.

Highlights

  • Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are adaptive immune systems used by many bacteria and archaea to fight off foreign DNA in the form of bacterial phages and/or plasmids [1,2,3,4,5]

  • CRISPR-Cas platforms continue to evolve with constantly improving small guide RNA (sgRNA) design, ontarget specificity, and target sequence selection algorithms

  • CRISPR-Cas9 is a scalable and effective new technology that can be used to knock out individual gene expression in large scale at the gene level and do so with minimal off-target effects

Read more

Summary

Introduction

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are adaptive immune systems used by many bacteria and archaea to fight off foreign DNA in the form of bacterial phages and/or plasmids [1,2,3,4,5]. Realizing the potential power of a programmable nuclease to edit mammalian genomes, the CRISPR-Cas9 system has since been commercially developed as a technology for use in loss-of-function (LOF) studies [13,14]. The Cas9 protein, tracrRNA, and the sgRNA form a complex, bind to the target sequence, and make a double-stranded break in the target.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.