Abstract
We present a general thermodynamic picture of the folding of RNA-like heteropolymer based on the basic physical principles. The Hamiltonian of the model includes all characteristic interactions explicitly. A particular attention is paid to the electrostatic interactions whose role in the RNA folding is known to be crucial. In this paper we study RNA folding with the full Hamiltonian and describe the spin-glass behavior on the level of tertiary structure. We show that formation of the stable tertiary structure is possible in the random RNA-like molecule. By including into the model the nonspecific interactions of the RNA molecule with counterions, we derive the logarithmic dependencies of the melting and freezing temperatures on the ion concentration, which is consistent with experimental data [R. Shiman and D. E. Draper, J. Mol. Biol. 302, 79 (2000)]. We also infer that the large RNA folds slower than the hierarchical model predicts, which was observed in the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.