Abstract

There are two modes of X chromosome inactivation (XCI) in the mouse. One mode is imprinted XCI: it is initiated at around the four-cell stage in favor of the paternal X chromosome, and is maintained in the extraembryonic tissues. The other mode is random XCI, which takes place in the epiblast lineage at the periimplantation stage. X-linked noncoding Xist RNA, which becomes upregulated on the X chromosome to be inactivated at the onset of XCI and plays a critical role in both imprinted and random XCI, and its accumulation in the nucleus have been referred to as one of the hallmarks of the presence of the inactivated X chromosome. RNA-FISH has therefore been an invaluable method for the study of XCI. As XCI status changes dynamically during periimplantation development in the mouse, analysis using samples from these developmental stages is absolutely necessary for elucidation of the molecular basis of XCI mechanisms. However, dissection of the embryos at around the periimplantation stages is not easy, and this impedes in vivo analysis of the kinetics of XCI. Here, we describe our methods for dissecting the periimplantation stage embryo and subsequent procedures for RNA-FISH and immunostaining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.