Abstract

Scientific studies in oncology, cancer diagnosis, and monitoring tumor response to therapeutics currently rely on a growing number of clinico-pathological information. These often include molecular analyses. The quality of these analyses depends on both pre-analytical and analytical information and often includes the extraction of DNA and/or RNA from human tissues and cells. The quality and quantity of obtained nucleic acids are of utmost importance. The use of automated techniques presents several advantages over manual techniques, such as reducing technical time and thus cost, and facilitating standardization. The purpose of this study was to validate an automated technique for RNA extraction from cells of patients treated for various malignant blood diseases. A well-established manual technique was compared to an automated technique, in order to extract RNA from blood samples drawn for the molecular diagnosis of a variety of leukemic diseases or monitoring of minimal residual disease. The quality of the RNA was evaluated by real-time quantitative RT-PCR (RQ-PCR) analyses of the Abelson gene transcript. The results show that both techniques produce RNA with comparable quality and quantity, thus suggesting that an automated technique can be substituted for the reference and manual technique used in the daily routine of a molecular pathology laboratory involved in minimal residual disease monitoring. Increased costs of reagents and disposables used for automated techniques can be compensated by a decrease in human resource.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call