Abstract

The large polymerase subunit (L) of non-segmented negative strand RNA viruses transcribes viral mRNAs and replicates the viral genome. Studies with VSV have shown that conserved region V (CRV) of the L protein is part of the capping domain. However, CRV folds over and protrudes into the polymerization domain, suggesting that it might also have a role in RNA synthesis. In this study, the role of respiratory syncytial virus (RSV) CRV was evaluated using single amino acid substitutions and a small molecule inhibitor called BI-D. Effects were analyzed using cell-based minigenome and in vitro biochemical assays. Several amino acid substitutions inhibited production of capped, full-length mRNA and instead resulted in accumulation of short transcripts of approximately 40 nucleotides in length, confirming that RSV CRV has a role in capping. In addition, all six variants tested were either partially or completely defective in RNA replication. This was due to an inability of the polymerase to efficiently elongate the RNA within the promoter region. BI-D also inhibited transcription and replication. In this case, polymerase elongation activity within the promoter region was enhanced, such that the small RNA transcribed from the promoter was not released and instead was elongated past the first gene start signal. This was accompanied by a decrease in mRNA initiation at the first gene start signal and accumulation of aberrant RNAs of varying length. Thus, in addition to its function in mRNA capping, conserved region V modulates the elongation properties of the polymerase to enable productive transcription and replication to occur.

Highlights

  • respiratory syncytial virus (RSV) is a major cause of respiratory disease in infants, immunosuppressed individuals and the elderly

  • Respiratory syncytial virus (RSV) is a leading cause of respiratory illness in infants, elderly, and immunocompromised individuals, yet treatment is limited to supportive medical care

  • The large polymerase protein (L) of RSV is essential for transcribing viral mRNAs and replicating the genome, and is an attractive target for antiviral intervention

Read more

Summary

Introduction

RSV is a major cause of respiratory disease in infants, immunosuppressed individuals and the elderly. There is a need for novel antivirals against the virus. RSV is a member of the Family Pneumoviridae in the Order Mononegavirales, the non-segmented, negative strand RNA viruses (nsNSVs) [2]. Like other viruses in the order, the RSV genome is transcribed and replicated by the viral RNA-dependent RNA polymerase. Because it is essential for viral multiplication, and possesses enzymatic properties, the polymerase is considered a highly promising target for antiviral drug development [3, 4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call